Learning to Manipulate and Categorize in Human and Artificial Agents

نویسندگان

  • Giuseppe Morlino
  • Claudia Gianelli
  • Anna M. Borghi
  • Stefano Nolfi
چکیده

This study investigates the acquisition of integrated object manipulation and categorization abilities through a series of experiments in which human adults and artificial agents were asked to learn to manipulate two-dimensional objects that varied in shape, color, weight, and color intensity. The analysis of the obtained results and the comparison of the behavior displayed by human and artificial agents allowed us to identify the key role played by features affecting the agent/environment interaction, the relation between category and action development, and the role of cognitive biases originating from previous knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Combination of Intravenous Anesthetic Agents on Human Glycine Receptor evaluated by Artificial Neural Networks

Introduction: Intravenous general anesthetic agents are among the most important and widely used anesthetic drugs in the clinical practice. Many pharmacological studies have shown that potentiation of GABA and glycine on their receptors is the most plausible mechanism. Nevertheless, there is limited information on the effects of co-administration of two or more of these agents. However, expe...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Investigating students empathy and their school learning behaviors using Artificial Intelligence methods

Introduction Schools have a central role in cultivating students' personality by inculcating empathy. Empathy is the ability of one person to understand what another person is thinking and feeling in a given situation. The goal of this study is to explore the relationship between students’ empathy and their learning behaviors. The first task of our work is to classify students into clusters ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cognitive science

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 2015